A label-free fluorescent probe for Hg2+ and biothiols based on graphene oxide and Ru-complex

نویسندگان

  • Linlin Wang
  • Tianming Yao
  • Shuo Shi
  • Yanlin Cao
  • Wenliang Sun
چکیده

A novel, selective and sensitive switch-on fluorescent sensor for Hg(2+) and switch-off fluorescent probe for biothiols was developed by using [Ru(bpy)₂(pip)](2+) as the signal reporter and graphene oxide (GO) as the quencher. Due to the affinity of GO towards single-stranded DNA (ss-DNA) and [Ru(bpy)₂(pip)](2+), the three components assembled, resulting in fluorescence quenching. Upon addition of Hg(2+), a double-stranded DNA (ds-DNA) via T-Hg(2+)-T base pairs was formed, and [Ru(bpy)₂(pip)](2+) intercalated into the newly formed ds-DNA. Then, [Ru(bpy)₂(pip)](2+) and ds-DNA were removed from the surface of GO, resulting in the restoration of fluorescence. Subsequently, upon addition of biothiols, Hg(2+) was released from ds-DNA, due to the higher affinity of Hg(2+) to the sulfur atoms of biothiols, which could induce ds-DNA unwinding to form ss-DNA. Then ss-DNA and [Ru(bpy)₂(pip)](2+) were adsorbed on the surface of GO, the fluorescence of [Ru(bpy)₂(pip)](2+) was quenched again. Therefore, the changes in emission intensity of [Ru(bpy)₂(pip)](2+) directly correlated to the amount of detection target (Hg(2+) or biothiols) in solution. The assay exhibited high sensitivity and selectivity, with the limits of detection for Hg(2+), cysteine (Cys) and glutathione (GSH) to be 2.34 nM, 6.20 nM and 4.60 nM, respectively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel graphene oxide based fluorescent nanosensing strategy with hybridization chain reaction signal amplification for highly sensitive biothiol detection.

A novel fluorescent nanosensor has been developed for detecting biothiols including cysteine and glutathione using graphene oxide based hairpin DNA-selective fluorescence quenching and thymine-Hg(II)-thymine coordination-controlled hybridization chain reaction, which provides a simple but the most sensitive platform for biothiol assays.

متن کامل

Ag nanoparticle-decorated graphene quantum dots for label-free, rapid and sensitive detection of Ag+ and biothiols.

We demonstrate a novel, rapid and label-free assay for the detection of Ag(+) and biothiols with high sensitivity and selectivity by utilization of Ag nanoparticle-decorated graphene quantum dots.

متن کامل

A reversible fluorescence nanoswitch based on bifunctional reduced graphene oxide: use for detection of Hg2+ and molecular logic gate operation.

Herein, we demonstrate the first use of a reduced graphene oxide (rGO)-organic dye nanoswitch for the label-free, sensitive and selective detection of Hg(2+) using bifunctional rGO as an effective nanoquencher and highly selective nanosorbent. Moreover, a reversible on-off INHIBIT rGO logic gate based on a cysteine-Hg(2+) system has also been designed.

متن کامل

Investigation of immunosensor modification with reduced Graphene Oxide with Au Nanoparticles on glassy carbon electrode in Label-free for Escherichia coli detection

Escherichia coli is an indicator in the quality control of pharmaceutical and other samples. Reduced graphene oxide (rGO) as a kind of carbon compositions was immobilized on glassy carbon electrode (GCE). Chronoamperometric and reduction methods were used for Au NPs decoration and it completed with polyclonal E. coli antibody and 0.5 W/V% Bovine Serum Albumin solution. Morphology and structure ...

متن کامل

A functional ruthenium(ii) complex for imaging biothiols in living bodies.

A unique ruthenium(ii) complex, [Ru(bpy)2(DNS-bpy)](PF6)2 [bpy: 2,2'-bipyridine, DNS-bpy: 4-(2,4-dinitrophenylthio)-2,2'-bipyridine], that can act as a probe for the recognition and luminescence sensing of biothiols has been designed and synthesized. Due to the presence of effective photo-induced electron transfer (PET) from the potent electron donor (Ru-bpy centre) to the strong electron accep...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014